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Abstract: We consider classical superstrings propagating on AdS5 × S5 space-time. We

consistently truncate the superstring equations of motion to the so-called su(1|1) sector.

By fixing the uniform gauge we show that physical excitations in this sector are described

by two complex fermionic degrees of freedom and we obtain the corresponding lagrangian.

Remarkably, this lagrangian can be cast in a two-dimensional Lorentz-invariant form. The

kinetic part of the lagrangian induces a non-trivial Poisson structure while the hamiltonian

is just the one of the massive Dirac fermion. We find a change of variables which brings the

Poisson structure to the canonical form but makes the hamiltonian nontrivial. The hamil-

tonian is derived as an exact function of two parameters: the total S5 angular momentum

J and string tension λ; it is a polynomial in 1/J and in
√

λ′ where λ′ = λ
J2 is the effective

BMN coupling. We identify the string states dual to the gauge theory operators from the

closed su(1|1) sector of N = 4 SYM and show that the corresponding near-plane wave

energy shift computed from our hamiltonian perfectly agrees with that recently found in

the literature. Finally we show that the hamiltonian is integrable by explicitly constructing

the corresponding Lax representation.
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1. Introduction

Further progress in understanding the AdS/CFT duality [1] in the large N limit requires

quantizing superstring theory on AdS5×S5. Even though classical superstring on AdS5×S5

is an integrable model [2] it is difficult to quantize it by conventional methods developed

in the theory of quantum integrable systems [3]. Action variables are encoded in algebraic

curves describing finite-gap solutions of the string sigma-model [4], however, angle variables

have not been yet identified.
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On the other hand, the dilatation operator of N = 4 SYM can be viewed as a hamil-

tonian of an integrable spin chain [5] which at higher loops becomes long-range [6]. Per-

turbative scaling dimensions of composite operators can be computed by solving the cor-

responding Bethe ansatz equations [7, 8].1

The success of the Bethe ansatz approach in gauge theory hints that the spectrum

of quantum strings might also be encoded in a similar set of equations. Indeed, a Bethe

type ansatz which captures dynamics of quantum strings in certain asymptotic regimes has

been proposed [14]. The quantum string Bethe ansatz (QSBA) describes the spectrum of

string states dual to gauge theory operators from the closed su(2) sector [14]. The dual

gauge theory contains other closed sectors [15], and it is possible to generalize the QSBA

to these [16], and even to the complete model [8]. However, it remains unclear how the

QSBA can emerge from an exact (non-semiclassical) quantization of strings.

It turns out that classical superstring theory on AdS5×S5 admits consistent truncations

to smaller sectors [17] which contain string states dual to operators from the closed sectors

of gauge theory. Apparently, the truncated models are non-critical, and therefore, are

expected to loose many important features of the superstring theory on AdS5 × S5 such as

conformal invariance and renormalizability. However, they inherit classical integrability of

the parent theory, and one might hope that despite their apparent non-renormalizability

there would exist a unique quantum deformation which preserves integrability and describes

correctly the dynamics of quantum superstrings in these sectors.

As is known [15], N = 4 SYM contains three simple closed sectors: su(2), sl(2) and

su(1|1). In the full theory they are related to each other by supersymmetry which implies

highly nontrivial relations between the spectra of operators from these sectors [16]. The

consistent truncations of classical superstring theory to the su(2) and sl(2) sectors describe

strings propagating in R× S3 and AdS3 × S1, respectively. A truncation of superstrings to

the su(1|1) sector is unknown, and finding it is one of the aims of our paper.

The su(1|1) sector of the gauge theory seems to be the simplest one, in particular, the

one-loop dilatation operator describes a free lattice fermion [18]. In truncated string theory

one expects physical excitations to be carried by two complex fermions, and, therefore,

one might hope to find an action which is polynomial in the fermionic variables. This

would represent a drastic simplification in comparison to the reductions of superstrings to

the su(2) and sl(2) sectors where physical excitations are bosonic and described by non-

polynomial Nambu-type actions [19]. Thus, finding quantum deformations in the su(1|1)
sector might be more feasible.

Independently of the importance of this problem to the AdS/CFT correspondence,

finding consistent reductions of the superstring theory provides a way to generate new

interesting integrable models. The simplest example of such a kind is the Neumann model

[20] describing rigid multi-spin string solitons [21]. Among other examples of new integrable

systems is the Nambu-type hamiltonian for physical degrees of freedom of bosonic strings

on AdS5 × S5 [19].

1Related aspects of integrability of strings on AdS5 × S5 and its gauge theory counterpart were also

studied in [9]–[13] and subsequent works.
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We start from the classical string action on AdS5 × S5 [22, 23] formulated as a sigma-

model on the coset PSU(2,2|4)/SO(4,1)×SO(5). It is essential for our approach to parame-

trize a coset representative by coordinates on which the global symmetry group PSU(2,2|4)
is linearly realized. This makes the identification between these string coordinates and the

fields of the dual gauge theory transparent. It also allows us to find easily a consistent

truncation of the string equations of motion to the su(1|1) sector. This procedure involves

imposing a so-called uniform gauge [24, 19] which amounts to identifying the global AdS

time with the world-sheet time τ and fixing the momentum of an angle variable of S5 to

be equal to the corresponding U(1) charge J . Before the gauge fixing the string lagrangian

of the reduced model has two bosons and two complex fermions, and inherits two linearly

realized supersymmetries from the parent theory. Imposing the gauge completely removes

all the bosons so that the physical excitations are carried only by the fermions while

supersymmetries become non-linearly realized. Quite surprisingly, the two complex space-

time fermions can be combined into a single Dirac fermion, ψ, and the action can be

cast into a manifestly two-dimensional Lorentz-invariant form. Thus, the original Green-

Schwarz fermions which are world-sheet scalars transform into world-sheet spinors. This

reminds the relation between the flat space light-cone formulations of the Green-Schwarz

and NSR superstrings. In addition the lagrangian exhibits the usual U(1) symmetry which

is realized by a phase multiplication of the Dirac fermion.

The hamiltonian we obtain coincides with that of the massive Dirac fermion. However,

the kinetic part of the lagrangian induces a non-trivial Poisson structure which we explicitly

describe. The Poisson bracket is ultra-local, and is an 8-th order polynomial in the fermion

ψ and its first derivative. Then, we show that there is a change of variables which brings

the Poisson structure to the canonical form but makes the hamiltonian nontrivial. We find

the hamiltonian as an exact function of two parameters: the total S5 angular momentum

J and string tension λ. It appears to be a polynomial in 1/J and in
√

λ′ where λ′ = λ
J2 is

the effective BMN coupling.

We can also use our hamiltonian to study the near-plane wave corrections to the energy

of the plane-wave states from the su(1|1) sector. To this end we keep in the hamiltonian

terms up to order 1/J , and compute the energy shift by using the first-order perturbation

theory. The same correction has been already found in [25, 26] by using a light-cone

type gauge. The uniform gauge we adopt in our approach is different and that makes a

comparison of their hamiltonian with ours difficult. Nevertheless, we demonstrate that the

energy of an arbitrary M -impurity plane-wave state computed by using our hamiltonian is

in a perfect agreement with the results by [25, 26]. Thus, at the order 1/J our hamiltonian

leads to equivalent dynamics. Let us also mention that the coherent state description of

the su(1|1) sector with its further comparison to string theory was considered in [27].

Finally, we show that the Lax representation of the full string sigma-model [2] also

admits a consistent reduction to the su(1|1) sector. Thus, the hamiltonian of the reduced

model is also integrable.

The paper is organized as follows. In section 2 we recall the necessary facts about the

Lie superalgebra psu(2, 2|4), and the construction of the string sigma-model lagrangian. We

also discuss our specific choice for the coset representative as well as the global symmetries
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of the model. In section 3 we identify the consistent truncation to the su(1|1) sector

and in section 4 we obtain the corresponding lagrangian. In section 5 the hamiltonian

and the Poisson structure of the model are found. By redefining the fermionic variables

we transform in section 6 the Poisson structure to the canonical form and compute the

accompanying hamiltonian. In section 7 the near-plane wave energy shift is computed, and

in section 8 the Lax representation for the reduced model is studied. Finally, some technical

details and the Poisson structure of the reduced model are collected in five appendices.

2. Superstring on AdS5 × S5 as the coset sigma-model

Superstring propagating in the AdS5 × S5 space-time can be described as the non-linear

sigma-model whose target space is the following coset [22]

PSU(2, 2|4)
SO(4, 1) × SO(5)

. (2.1)

Here the supergroup PSU(2, 2|4) with the Lie algebra psu(2, 2|4) is the isometry group of

the AdS5×S5 superspace. The string theory action is the sum of the non-linear sigma-model

action and of the topological Wess-Zumino term to ensure κ-symmetry.

In what follows we need to introduce a suitable parametrization for the coset element

(2.1). We start by recalling several basic facts about the corresponding Lie superalgebra.

2.1 The superalgebra psu(2, 2|4)
The superalgebra su(2, 2|4) is spanned by 8× 8 matrices M which can be written in terms

of 4 × 4 blocks as

M =

(
A X

Y D

)
. (2.2)

These matrices are required to have vanishing supertrace strM = trA − trD = 0 and to

satisfy the following reality condition

HM + M †H = 0 . (2.3)

For our further purposes it is convenient to pick up the hermitian matrix H to be of the

form

H =

(
Σ 0

0 −I

)
, (2.4)

where Σ is the following matrix

Σ =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 (2.5)

– 4 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
8

and I denotes the identity matrix of the corresponding dimension. The matrices A and D

are even, and X,Y are odd (linearly depend on fermionic variables). The condition (2.3)

implies that A and D span the subalgebras u(2, 2) and u(4) respectively, while X and Y

are related through Y = X†Σ. The algebra su(2, 2|4) also contains the u(1) generator iI

as it obeys eq.(2.3) and has zero supertrace. Thus, the bosonic subalgebra of su(2, 2|4) is

su(2, 2) ⊕ su(4) ⊕ u(1) . (2.6)

The superalgebra psu(2, 2|4) is defined as the quotient algebra of su(2, 2|4) over this u(1)

factor; it has no realization in terms of 8 × 8 supermatrices.

The superalgebra su(2, 2|4) has a Z4 grading

M = M (0) ⊕ M (1) ⊕ M (2) ⊕ M (3)

defined by the automorphism M → Ω(M) with

Ω(M) =

(
KAtK − KY tK

KXtK KDtK

)
, (2.7)

where we choose the 4 × 4 matrix K satisfying K2 = −I to be

K =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 . (2.8)

The space M (0) is in fact the so(4, 1)× so(5) subalgebra, the subspaces M (1,3) contain odd

fermionic variables.

The orthogonal complement M (2) of so(4, 1) × so(5) in su(2, 2) ⊕ su(4) can be con-

veniently described as follows. In appendix A we introduce the matrices γa and Γa,

a = 1, . . . , 5, which are the Dirac matrices for SO(4,1) and SO(5) correspondingly. These

matrices obey the relations

Kγt
aK = −γa , KΓt

aK = −Γa (2.9)

and, therefore, they span the orthogonal complements to the Lie algebras so(4,1) and so(5)

respectively.

2.2 The lagrangian

Consider now a group element g belonging to PSU(2, 2|4) and construct the following

current

A = −g−1dg = A(0) + A(2)
︸ ︷︷ ︸

even

+A(1) + A(3)
︸ ︷︷ ︸

odd

. (2.10)

Here we also exhibited the Z4 decomposition of the current. By construction this current

has zero-curvature.
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The lagrangian density for superstring on AdS5×S5 can be written in the form [22, 23]

L = −1
2

√
λγαβstr

(
A(2)

α A
(2)
β

)
− κεαβstr

(
A(1)

α A
(3)
β

)
, (2.11)

which is the sum of the kinetic and the Wess-Zumino terms. κ-symmetry requires κ =

±1
2

√
λ. Here we use the convention ετσ = 1 and γαβ = hαβ

√
−h is the Weyl-invariant

combination of the metric on the string world-sheet with detγ = −1.

2.3 Coset representative

Obviously there are many different ways to parametrize the coset element (2.1), all of

them related by non-linear field redefinitions. In what follows we find convenient to use

the following parametrization for the coset element

g = g(θ, η)g(x, y) . (2.12)

Here g(x, y) describes an embedding of AdS5 × S5 into SU(2,2) × SU(4) and g(θ, η) is a

matrix which incorporates the original 32 fermionic degrees of freedom. We take

g(x, y) = exp 1
2 (xaγa)︸ ︷︷ ︸
g(x)

exp i
2(yaΓa)︸ ︷︷ ︸
g(y)

(2.13)

Here the coordinates xa parametrize the AdS5 space while ya stand for coordinates of the

five-sphere. It is also understood that g(x, y) is a 8 by 8 block-diagonal matrix with the

upper 4 by 4 block equal to g(x), and the lower block equal to g(y).

Finally, the odd matrix is of the form (distinction between θ’s and η’s will be discussed

later)

g(θ, η) = exp




0 0 0 0 η5 η6 η7 η8

0 0 0 0 η1 η2 η3 η4

0 0 0 0 θ1 θ2 θ3 θ4

0 0 0 0 θ5 θ6 θ7 θ8

η5 η1 −θ1 −θ5 0 0 0 0

η6 η2 −θ2 −θ6 0 0 0 0

η7 η3 −θ3 −θ7 0 0 0 0

η8 η4 −θ4 −θ8 0 0 0 0




. (2.14)

Here θi and ηi are 8 + 8 complex fermions obeying the following conjugation rule θi ∗ = θi

and ηi ∗ = ηi. By construction the element g and, g(θ, η) in particular, belong to the

supergroup SU(2,2|4).
It is worth emphasizing that the parametrization of the coset element we choose is

different from the one used by Metsaev and Tseytlin [22], in particular we put the matrix

containing fermionic variables to the left from the bosonic coset representative. As we will

see such a form of the coset element makes the transformation properties of fermions under

the global symmetry group transparent and will allow us to easily identify the consistent

truncation.
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The bosonic coset element (2.13) provides parametrization of the AdS5 × S5 space in

terms of 5+5 unconstrained coordinates xa and ya. It is however more convenient to work

with the constrained 6 + 6 coordinates which describe the embeddings of the AdS5 and

the five-sphere into R
4,2 and R

6 respectively. The latter parametrization was introduced

in [20]. Here the AdS and the sphere representatives, ga(v) and gs(u), are described by the

following matrices

ga(v) =




0 − iv5 − v6 v1 − iv4 − iv2 − v3

iv5 + v6 0 − iv2 + v3 v1 + iv4

−v1 + iv4 iv2 − v3 0 iv5 − v6

iv2 + v3 − v1 − iv4 − iv5 + v6 0


 , (2.15)

gs(u) =




0 − iu5 − u6 − iu1 − u4 − u2 + iu3

iu5 + u6 0 − u2 − iu3 − iu1 + u4

iu1 + u4 u2 + iu3 0 iu5 − u6

u2 − iu3 iu1 − u4 − iu5 + u6 0


 . (2.16)

The new variables u, v are constrained

v2
1 + v2

2 + v2
3 + v2

4 − v2
5 − v2

6 = −1

u2
1 + u2

2 + u2
3 + u2

2 + u2
5 + u2

6 = 1 (2.17)

which guarantees that ga(v) and gs(u) belong to SU(2,2) and SU(4) respectively. On the

coordinates (u, v) the conformal and R-symmetry transformations act linearly which is not

the case for (x, y).

It is not difficult to find the explicit relation between these two different description

of the coset space. Taking into account that arbitrary coset elements ga(v) and gs(u) of

SU(2,2)/SO(4,1) and SU(4)/SO(5) respectively can be represented in the form

ga(v) = g(x)Kg(x)t , gs(u) = g(y)Kg(y)t , (2.18)

where g(x) and g(y) are SU(2,2) and SU(4) matrices, and choosing them to be given by

(2.13), we see that the following relations are satisfied

xa =
|x|

sinh |x|va, |x| = arcoshv6 , (2.19)

ya =
|y|

sin |y|ua, |y| = arccos u6 . (2.20)

Here also

|x|2 = x2
1 + x2

2 + x2
3 + x2

4 − x2
5 , |y|2 = y2

1 + y2
2 + y2

3 + y2
4 + y2

5 .

As was mentioned above, the coordinates (u, v) are very convenient because they trans-

form linearly under the isometry group. In the following we first determine the lagrangian

of the theory in terms of the coset element (2.1) and then substitute in the final result the

change of variables (x, y) → (u, v) according to eqs. (2.19), (2.20).
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2.4 Global symmetries

To identify a consistent truncation to the su(1|1) sector we have to analyze the global

symmetries in more detail. According to the standard technique of non-linear realizations

the isometry group PSU(2, 2|4) acts on the coset representative by multiplication from the

left

Gg = g′gc . (2.21)

Here G ∈ PSU(2, 2|4), g and g′ are the coset representatives before and after the group

action and gc is a compensating transformation from SO(4,1)× SO(5). We will need only

infinitesimal transformations generated by the algebra psu(2, 2|4).

Conformal transformations of bosonic fields. Consider first the bosonic AdS coset

element g(x). We note that since a matrix A ≡ 1
2xaγa obeys the relation KAtK = −A the

element g itself also obeys

Kg(x)tK = −g(x) . (2.22)

This gives a nice way to describe this coset. The coset element is just a matrix from SU(2,2)

group obeying an additional constraint (2.22). An infinitesimal conformal transformation

reads

δg(x) = Φg(x) − g(x)Φc . (2.23)

Here Φ is an arbitrary matrix from the Lie algebra su(2, 2); it plays the role of the parameter

of an infinitesimal conformal transformation. The matrix Φc belongs to so(4,1)⊂ su(2, 2)

and, therefore, it obeys the relation

KΦt
cK = Φc . (2.24)

The element Φc is not independent but should be found for a given Φ by requiring that

δg(x) also belongs to the coset, in other words,

Kδg(x)tK = −δg(x) . (2.25)

This equation allows one to find the compensating so(4,1) transformation Φc ≡ Φc(Φ, g).

Actually to determine the transformation law for the variables v the compensating matrix

Φc is not needed. Indeed, using the formula (2.18) we obtain

δga(v) = Φga(v) + ga(v)Φt , (2.26)

where Φc decouples due to eq. (2.24). The explicit form of the transformation rules for the

coordinates v can be found in appendix B.

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
8

In what follows we will be interested in the form of Φ corresponding to translations

of the global AdS time coordinate. The corresponding generator is identified with the

dilatation operator. As is clear from eq. (2.17), the global AdS time coordinate t can be

expressed through v5 and v6 as follows

eit = iv5 + v6 .

Then the U(1) subgroup which rotates only v5 and v6 corresponds to translations of t. The

explicit form of Φ can be easily found from the formulas in appendix B, and is given by

Φ = ξ
i

2




1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 −1


 . (2.27)

The time coordinate t is shifted by the transformation by ξ: t → t′ = t + ξ, and one can

easily see by using formulas from appendix A that the dilatation operator that generates

the shift is

Φt = 1
2γ5 .

For our further purposes it is useful to identify the so(4) ⊂ su(2, 2) symmetry which

linearly rotates v1, . . . , v4 but does not affect v5,6 directions. It is induced by the following

matrix

Φso(4) =




iξ1 α1 + iβ1 0 0

−α1 + iβ1 − iξ1 0 0

0 0 iξ3 α6 + iβ6

0 0 − α6 + iβ6 −iξ3


 (2.28)

that is a direct sum of two su(2)’s.

R-symmetry transformations of bosonic fields. A similar analysis goes for the ac-

tion of the su(4) R-symmetry transformations. There are several interesting U(1) subgroups

of the su(4) algebra. To identify them we notice that the form of gs in eq. (2.15) suggests

to introduce the following three complex scalars

Z1 = u4 + iu1 , Z2 = u2 + iu3 , Z3 = u6 + iu5 . (2.29)

Then from Appendices B and A we deduce that the field Z3 carries a unit charge under

the following u(1) of su(4) generated by the matrix

Φ3 =
1

2




1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 −1


 = 1

2Γ5 . (2.30)

The fields Z1 and Z2 are neutral under this U(1) group.
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In the same way we find that Z1 carries a unit charge and Z2 and Z3 are neutral under

the u(1) generated by

Φ1 =
1

2




1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 −1


 ,

and Z2 carries a unit charge and Z1 and Z3 are neutral under the u(1) generated by

Φ2 =
1

2




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 .

Further we note that the last two u(1)’s are subalgebras of so(4)=su(2) × su(2) sym-

metry algebra which rotates only u1, . . . u4, and is embedded in su(4) as

Φso(4) =




iξ1 α1 + iβ1 0 0

−α1 + iβ1 − iξ1 0 0

0 0 iξ3 α6 + iβ6

0 0 − α6 + iβ6 −iξ3


 . (2.31)

Conformal and R-symmetry transformations of fermions. Let us now determine

the transformation rules for the fermionic variables under conformal and R-symmetry trans-

formations. To simplify the notation we denote g(θ, η) = exp Θ and the bosonic coset

element by g. Then the infinitezimal action of the symmetry group on fermions can be

deduced from the general formula describing the variation of the coset element

δΦ(eΘg) = ΦeΘg − eΘgΦc ,

where Φc is again a compensating transformation which generically might depend on Φ, g

and Θ. Taking into account the expression (2.23) we find the transformation rule for

fermionic variables

δΦΘ = [Φ,Θ] . (2.32)

This shows an advantage of our coset parametrization: the symmetries act linearly on

fermionic variables, just in the same manner as in the dual gauge theory!

The similarity can be made even more explicit if we use (2.14) to write the fermionic

matrix Θ in the block form

Θ =

(
0 Ψ̃

Ψ 0

)
,

and the conformal and R-symmetry transformations matrix Φ in the block-diagonal form

Φ =

(
Φa 0

0 Φs

)
.
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Then, it is easy to see that

δΦΨ = Φs Ψ − Ψ Φa , δΦΨ̃ = Φa Ψ̃ − Ψ̃ Φs . (2.33)

It is clear from the formula that all columns of Ψ transform in the fundamental repre-

sentation of su(4), and all columns of Ψ̃ transform in the fundamental representation of

su(2, 2).

The transformation law (2.33) and the form of the dilatation matrix (2.27) can be used

to determine that all ηi have charge 1
2 under the dilatation while the charge of θi is −1

2 .

This explains the notational distinction we made for the fermions η’s and θ’s.

Supersymmetry transformations. For the infinitezimal supersymmetry transforma-

tions with fermionic parameter ε (comprising 32 supersymmetries) we find (up to the linear

order in Θ )

δεg = 1
2 [ε,Θ]g − gΦc , (2.34)

δεΘ = ε . (2.35)

Here again g is the bosonic coset element and Φc ≡ Φc(ε,Ω) ∈so(4,1)×so(5) should be

determined from the condition (2.22). For the elements ga(v) and gs(u) formula (2.34)

implies

2δε

(
ga(v) 0

0 gs(u)

)
= [ε,Θ]

(
ga(v) 0

0 gs(u)

)
+

(
ga(v) 0

0 gs(u)

)
[ε,Θ]t .

This concludes our discussion of the global symmetry transformations.

3. The su(1|1) sector of string theory

We would like to find a consistent truncation of the superstring equations to the smallest

sector which should include the states dual to the su(1|1) sector of the dual gauge theory.

We therefore start with recalling the necessary facts about the su(1|1) sector of the gauge

theory.

The su(1|1) sector of N = 4 SYM comprises gauge invariant composite operators of

the type

tr
(
ΨMZJ−M

2

)
+ · · · . (3.1)

In the N = 1 language Z stands for one of the three complex scalar superfields, while Ψα

is gaugino from the vector multiplet. The field Ψα transforms as a spinor under one of

the su(2)’s from the Lorentz algebra su(2, 2) and is neutral under the other. We use Ψ to

denote the highest weight component of Ψα. The fields Z and Ψ carry charges 1 and 1/2

under the U(1) subgroup of SU(4) generated by Φ3 (2.30). By dots in eq. (3.1) we mean

all possible operators which can be obtained by permuting the fermions inside the trace.

In the free theory the conformal dimension of the operators is ∆0 = J + M and the su(4)

Dynkin labels [0, J − M
2 ,M ].
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Coming back to string theory we notice that the three complex scalars Zi are naturally

assumed to be dual to scalar superfields of the gauge theory. Thus, reduction to the su(1|1)
sector requires in particular to put, e.g., Z1 = Z2 = 0. Also we put v1 = . . . = v4 = 0

leaving v5,6 corresponding to the global AdS time non-zero. The residual bosonic symmetry

algebra is then

so(4) × so(4) = su(2) × su(2)︸ ︷︷ ︸
AdS part

× su(2) × su(2)︸ ︷︷ ︸
sphere

. (3.2)

Taking into account eq. (2.32) together with eq. (2.28) it is easy to see how the original

16 complex fermions are decomposed w.r.t. the residual symmetry. Employing the notation

of [25] this decomposition can be described as follows

(2, 1; 2, 1) ⊕ (2, 1; 1, 2) ⊕ (1, 2; 2, 1) ⊕ (1, 2; 1, 2) . (3.3)

For instance an explicit form of the fermionic matrix carrying irrep (2, 1; 1, 2) is

Θ(2,1;1,2) =




0 0 0 0 0 0 η7 η8

0 0 0 0 0 0 η3 η4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

η7 η3 0 0 0 0 0 0

η8 η4 0 0 0 0 0 0




. (3.4)

One can show that the string equations of motion admit a consistent reduction to this

sector which is governed by two su(2)-symmetries: one su(2) from the Lorentz algebra and

another one from the R-symmetry algebra, see also [25]. However, this sector is still not

the one to put in correspondence with its counterpart from the dual gauge theory.

As we will see a consistent truncation to a smaller set of fermions exists. It amounts

to putting

η4 = η7 = η4 = η7 = 0

or, alternatively,

η3 = η8 = η3 = η8 = 0 .

To understand this we notice that in the N = 1 setting only SU(3)×U(1) subgroup of the

R-symmetry group is manifest. Since the gauge theory fermion Ψα belongs to the vector

multiplet it is neutral under su(3) which rotates three complex scalars between themselves.

On the string side the corresponding Lie algebra element is

Φ
su(3)×u(1) =




iξ1 α1 + iβ1 α2 + iβ2 0

−α1 + iβ1 iξ2 α4 + iβ4 0

−α2 + iβ2 − α4 + iβ4 iξ3 0

0 0 0 −i(ξ1 + ξ2 + ξ3)


 , (3.5)
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where the su(3) part is specified by choosing ξ3 = −ξ1 − ξ2. Under the diagonal part of

this matrix the fields transform as

δZ1 = i(ξ1 + ξ3)Z1 , δZ2 = i(ξ2 + ξ3)Z2 , δZ3 = i(ξ1 + ξ2)Z3 .

and, therefore, the u(1) part under which all Z-fields carry the same charge is specified

by ξ1 = ξ2 = ξ3. Again, by using eq. (2.32) it is easy to see that the fields which do

not transform under su(3) are η8 and η4. Thus, we would like to put one of these fields

in correspondence with the gauge theory fermion Ψ. However, analyzing the structure of

the cubic couplings in the lagrangian one can realize that the consistent reduction which

keeps non-zero only one fermion, say, η8 is not allowed. An obstruction arises due to the

Wess-Zumino term as it contains cubic couplings of two fermions with a single holomorphic

field Z ≡ Z3. Switching off η4 breaks the Lorentz algebra su(2) down to u(1). Under this

u(1) the field Z is uncharged while η8 and η3 carry opposite charges, and therefore, they

can form an invariant cubic coupling of the type

eitZη3η8 (3.6)

with possible τ and σ-derivatives acting on fermionic fields. Moreover, one can easily see

that this coupling is also allowed by the u(1)-symmetry as the u(1) charge of Z is precisely

the opposite to the sum of the fermionic charges. With the coupling eq. (3.6) in the

lagrangian it is inconsistent to put η3 = 0 because the equation of motion for η3 will then

turn into a non-linear constraint involving Z and η8.

Some comments are in order. In what follows we will loosely refer to the reduction

which keeps only two complex non-zero fermions, η3 and η8, as to the “su(1|1) sector” of

string theory. The discussion above clearly demonstrates, however, that consistent reduc-

tions of string equations of motion are not the same as closed subsectors of the dual gauge

theory as they already contain different number of degrees of freedom. We will return to

the question about the relation between gauge and string theory sectors in section 7. In this

section we have identified a possible truncation but we have not yet proven its consistency.

This will be done in section 8.

4. Lagrangian of the reduced model

In this section we fix a so-called uniform gauge [19] and derive the corresponding hamilto-

nian. In the uniform gauge approach the reparametrization freedom is used to identify the

world-sheet time τ with the global AdS time t and also to distribute a single component

J = J3 of the S5 angular momentum homogeneously along the string. We will obtain the

gauged-fixed hamiltonian as an exact function of J and further show that in the large J

expansion it reproduces the plane-wave hamiltonian and higher-order corrections to it.

In our reduction we choose to keep two complex fermions, η3 and η8. Let us recall the

definitions

iv5 + v6 = eit , Z = iu5 + u6 = eiφ .
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Here t is the global AdS time and φ is an angle variable along one of the S1’s embedded

in S5. Since we consider closed strings the embedding fields are assumed to be periodic

functions of 0 ≤ σ ≤ 2π. Periodicity then implies

φ(2π) − φ(0) = 2πm, m ∈ Z . (4.1)

The winding number m describes how many times the string winds around the circle

parametrized by φ.

Substituting the reduction into the lagrangian (2.11) we find the following result

L =
√

λ
2 γττ

(
ṫ2 − φ̇2 + i

2(ṫ + φ̇)ζτ

)
+ (4.2)

+
√

λ
2 γσσ

(
t′

2 − φ′2 + i
2(t′ + φ′)ζσ

)
+

+
√

λγτσ
(
ṫt′ − φ̇φ′ + i

4(ṫ + φ̇)ζσ + i
4(t′ + φ′)ζτ

)
+ Lwz .

Here and below dot and prime denote the derivatives w.r.t. τ and σ respectively. We have

also introduced the following concise notation for the fermionic contributions

ζτ = ηiη̇
i + ηiη̇i ,

ζσ = ηiη
′i + ηiη′i , (4.3)

where i = 3, 8. Inspection of the Wess-Zumino term shows that it contains exponential

terms of the type ei(t+φ) which are absent in the kinetic part of the lagrangian. All these

exponential terms can be removed by making the following rescaling of fermions2

η3,8 = e−
i
2 (t+φ)ϑ3,8 , η3,8 = e

i
2 (t+φ)ϑ3,8 .

The original fermions η were charged under the two u(1) symmetries that shift t and φ.

The new variables ϑ do not carry these charges any more, they appear to be neutral. This

fact will play an important role in constructing physical states dual to the gauge theory

operators from su(1|1) sector.

It is worth mentioning that because of the field redefinition the fermions ϑ are periodic

if the winding number m is even, and anti-periodic if m is odd.3

After the rescaling the lagrangian becomes

L =
√

λ
2 γττ

(
ṫ2 − φ̇2 + i

2(ṫ + φ̇)ζτ − 1
2(ṫ + φ̇)2Λ

)
+ (4.4)

+
√

λ
2 γσσ

(
t′

2 − φ′2 + i
2(t′ + φ′)ζσ − 1

2(t′ + φ′)2Λ
)

+

+
√

λγτσ
(
ṫt′ − φ̇φ′ + i

4(ṫ + φ̇)ζσ + i
4(t′ + φ′)ζτ − 1

2(ṫ + φ̇)(t′ + φ′)Λ
)

+ Lwz ,

2The new rescaled fermions ϑ3,8 should not be mistaken with the original fermions θi in Θ that were set

to zero to get the su(1|1) sector.
3The same effect was also found in the analysis of the spectrum of fluctuations around a multi-spin

circular string [28].

– 14 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
8

where the Wess-Zumino term has a remarkably simple form4

Lwz = κ
2Ωτ (t

′ + φ′) − κ
2Ωσ(ṫ + φ̇) . (4.5)

Here for various fermionic contributions we use the concise notations

ζτ = ϑiϑ̇
i + ϑiϑ̇i , Ωτ = ϑ3ϑ̇8 + ϑ8ϑ̇3 − ϑ3ϑ̇8 − ϑ8ϑ̇3 , Λ = ϑiϑ

i ,

ζσ = ϑiϑ
′i + ϑiϑ′

i , Ωσ = ϑ3ϑ
′
8 + ϑ8ϑ

′
3 − ϑ3ϑ′8 − ϑ8ϑ′3 .

(4.6)

To further understand the dynamics of our reduced model we have to identify the true

(physical) degrees of freedom. The most elegant way to achieve this goal is to construct the

hamiltonian formulation of the model. Let us denote by pt and pφ the canonical momenta

for t and φ. Computing from eq. (4.4) the momenta pt and pφ we recast our lagrangian in

the phase space form

L = ptṫ + pφφ̇ +
i

4
(pt − pφ)ζτ + κ

2 (t′ + φ′)Ωτ −

− 1

γττ
√

λ

[1

4
(pt − pφ)

(
pt(2 + Λ) + pφ(2 − Λ) + 2κΩσ

)
+

+
λ

4
(t′ + φ′)

(
t′(2 − Λ) − φ′(2 + Λ) + iζσ

)]
+

+
γτσ

γττ

[
ptt

′ + pφφ′ +
i

4
(pt − pφ)ζσ +

κ

2
(t′ + φ′)Ωσ

]
. (4.7)

As is usual in string theory with two-dimensional reparametrization invariance the compo-

nents of the world-sheet metric enter in the form of the lagrangian multipliers.

The uniform gauge amounts to imposing the following two conditions [19]

t = τ , pφ = J . (4.8)

The equations of motion for the phase space variables follow from eq. (4.7). Upon substi-

tution of the gauge conditions (4.8) some of these equations turn into constraints which we

have to solve in order to find the true dynamical degrees of freedom. Let us also note that

we do not introduce here the canonical momenta for the fermionic variables. Fermions are

not involved in our gauge choice and, therefore, can be treated at the final stage when all

the bosonic type constraints have been already solved.

Let us now describe the procedure for finding the physical hamiltonian in more detail.

First varying w.r.t. γτσ we obtain an equation for φ′:

φ′ = −i
pt − pφ

4pφ + 2κΩσ
ζσ . (4.9)

Variation w.r.t. to γττ gives an equation which we solve for pt. We find two solutions:

pt = pφ and

pt = −pφ(2 − Λ) + 2κΩσ

2 + Λ
. (4.10)

4We have also omitted a unessential total derivative contribution.
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The variable pt conjugated to the global AdS time t is nothing else as the density of the

space-time energy of the string: pt = −H. Indeed, since we fix t = τ the Noether charge

corresponding to the global time translations should coincide with the hamiltonian H for

physical degrees of freedom:

H =

∫ 2π

0

dσ

2π
H . (4.11)

We pick up the second solution (4.10) to proceed because it has the correct bosonic limit:

pt = −pφ that is H = J . Thus, we have determined the hamiltonian density

H =
J(2 − Λ) + 2κΩσ

2 + Λ
. (4.12)

Recalling the explicit expressions for Λ and Ωσ we see that the hamiltonian density does

not contain the time derivatives of the fermionic fields. We postpone further discussion of

H till we find solution of all the constraints.

Substituting the solution for pt into eq. (4.9) we obtain

φ′ =
iζσ

2 + Λ
. (4.13)

Integrating over σ and taking into account (4.1) we obtain a constraint

V = i

∫
dσ

2π

ζσ

2 + Λ
= m . (4.14)

This constraint is the level-matching condition which we will impose on physical states of

the theory. Actually the field φ is non-physical. Its evolution equation can be found from

(4.4) by varying w.r.t. pφ:

φ̇ =
2 − Λ + iζτ

2 + Λ
. (4.15)

Equations (4.15) and (4.13) determine φ in terms of fermionic variables. Thus, upon

imposing gauge conditions and solving the constraints we obtain that the physical degrees

of freedom in the sector we consider are carried by fermionic fields only.

Finally, equations of motion for pt and φ can be solved for the world-sheet metric. We

find the following result5

γττ =
i

2
√

λ

λζ2
σ + 4(2J + κΩσ)2

(ζτ − 4i)(2J + κΩσ) − κζσΩτ

, (4.16)

γτσ =
i

2
√

λ

λζσ(ζτ − 4i) + 4κ(2J + κΩσ)Ωτ

(ζτ − 4i)(2J + κΩσ) − κζσΩτ
. (4.17)

Clearly, due to the grassmanian nature of the fermionic variables these and all the other

expressions we obtain are polynomial in fermions.

5The metric component γτσ is determined up to an arbitrary function of τ which we have chosen to be

zero. This function plays the role of the lagrangian multiplier to the level-matching constraint, c.f. the

corresponding discussion in [19].
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Now substituting solutions of the constraints into (4.4) we obtain the following gauge-

fixed lagrangian

L = −J − iJζτ + 2κΩσ − 2JΛ

2 + Λ
− iκ

2

ζτΩσ − ζσΩτ

2 + Λ
. (4.18)

This lagrangian exhibits very interesting features which will be discussed in the next section.

5. Hamiltonian and Poisson structure of reduced model

First we introduce a two-component complex (Dirac) spinor ψ by combining the fermions as

ψ =

(
ϑ3

ϑ8

)
(5.1)

and also define the following Dirac matrices

ρ0 =

(
−1 0

0 1

)
, ρ1 =

(
0 i

i 0

)
. (5.2)

These matrices satisfy the Clifford algebra with the flat metric of the Minkowski signature.

We also define the Dirac conjugate spinor ψ̄ = ψ†ρ0. By using various fermionic identities

collected in appendix C the lagrangian (4.18) can be written as

L = −J − J

2

(
iψ̄ρ0∂0ψ − i∂0ψ̄ρ0ψ

)
+ iκ(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ) + Jψ̄ψ +

+
J

4

(
iψ̄ρ0∂0ψ − i∂0ψ̄ρ0ψ

)
ψ̄ψ − iκ

2
(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ)ψ̄ψ − 1

2
J(ψ̄ψ)2 +

+
κ

2
εαβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ) +

κ

8
εαβ(ψ̄ψ)2∂αψ̄ρ5∂βψ , (5.3)

where ρ5 = ρ0ρ1. Finally, we note that the lagrangian (5.3) can be further simplified if we

perform the following change of variables

ψ → ψ +
1

4
ψ(ψ̄ψ) , ψ̄ → ψ̄ +

1

4
ψ̄(ψ̄ψ) . (5.4)

Indeed, after this shift we obtain

L = −J − J

2

(
iψ̄ρ0∂0ψ − i∂0ψ̄ρ0ψ

)
+ iκ(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ) + Jψ̄ψ +

+
κ

2
εαβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ) − κ

4
εαβ(ψ̄ψ)2∂αψ̄ρ5∂βψ , (5.5)

Clearly, if we now rescale the world-sheet variable σ as

σ → −2κ

J
σ (5.6)

then the lagrangian density acquires the form

L = J
[
− 1 − 1

2

(
iψ̄ρα∂αψ − i∂αψ̄ραψ

)
+ ψ̄ψ − (5.7)
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−1

4
εαβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ) +

1

8
εαβ(ψ̄ψ)2∂αψ̄ρ5∂βψ

]

and it defines a Lorentz-invariant theory of the Dirac fermion on the flat two-dimensional

world-sheet ! Original space-time fermions of the Green-Schwarz superstring are combined

into spinors of the two-dimensional world-sheet. This is very similar to the well-known

relation between the light-cone formulations of the NSR and Green-Schwarz superstrings

in the flat space. Our lagrangian is however non-linear and extends up to six order in

fermions. If we then combine the prefactor J in eq. (5.7) with the transformation of

the measure dσ → −2κ
J

dσ under eq. (5.6) we see that rescaling (5.6) is equivalent to

restoring the overall
√

λ dependence of the lagrangian; the whole dependence on J goes

to the integration bound: 0 ≤ −σ ≤ πJ
κ

. Finally, we note that it would be interesting to

understand if and how to rewrite the lagrangian above as the covariant theory of the Dirac

fermion but on the curved world-sheet with the metric (4.16), (4.17). From now on we fix

κ =
√

λ
2 .

The lagrangian (5.5) is also invariant under the global U(1) symmetry ψ → eiεψ. In

fact this symmetry is nothing else but the U(1) part of the Lorentz SU(2) subgroup left

unbroken upon the reduction, c.f. the corresponding discussion in the previous section.

Computing the corresponding Noether charge Q we find

Q = J

∫
dσ

2π

(
ψ̄ρ0ψ − i

√
λ′

2
ψ̄ρ0ψ(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ)

)
. (5.8)

This symmetry will play a crucial role in constructing the physical states dual to gauge

theory operators from the su(1|1) sector.

To simplify our further discussion of the hamiltonian and Poisson structure of the

reduced model it is convenient to rescale the fermions as ψ → 1√
J
ψ. The lagrangian (5.5)

shows the following structure

L = Lkin −H , (5.9)

where the hamiltonian density H is of a very simple form

H = J − i

√
λ′

2
(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ) − ψ̄ψ , (5.10)

i.e. it is just the hamiltonian density for a massive two-dimensional Dirac fermion. The

kinetic term Lkin contains time derivatives and it is this term which defines the Poisson

structure of the model:

Lkin = −1

2

(
iψ̄ρ0∂0ψ − i∂0ψ̄ρ0ψ

)
− (5.11)

−
√

λ′

2J
(ψ̄∂1ψ ψ̄ρ5∂0ψ − ∂1ψ̄ψ ∂0ψ̄ρ5ψ) −

√
λ′

8J2
εαβ(ψ̄ψ)2∂αψ̄ρ5∂βψ .

Let us now explain how to find the corresponding Poisson bracket. Obviously, the canonical

momentum conjugate to ψ does not depend on ψ̇ and, therefore, implies the (second-class)

constraints between the phase-space variables. The standard way to determine the Poisson
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structure in this case is to construct the corresponding Dirac bracket. We, however, will

solve this problem in a simpler but equivalent way. Indeed, the equations of motion that

follow from eq. (5.5) can be schematically represented as

Ωijχ̇j =
δH

δχi
. (5.12)

Here the index i runs from 1 to 4 and we introduced the four-component fermion χ =

(ψ1, ψ2, ψ
∗
1 , ψ

∗
2). Denote by Ω−1 the inverse matrix. Then, eq. (5.12) can be written as

χ̇i = Ω−1
ij

δH

δχj

≡ {H, χi} . (5.13)

Clearly, Ω−1 defines the Poisson tensor which we are interested in. Thus, all what we need

to do is to compute from Lkin the 4 × 4 matrix Ω and then to invert it. Performing the

corresponding computation we find the following Poisson structure

{ψi(σ), ψj(σ
′)} = −i

√
λ′

4J
(ψkψl)

′δijεklδ(σ − σ′) + · · · (5.14)

{ψi(σ), ψ∗
j (σ′)} =

[
iδij + i

√
λ′

2J
(εikδjlψ

′
lψ

∗
k + εjkδilψkψ

′∗
l )

]
δ(σ − σ′) + · · · , (5.15)

where ε12 = 1. The Poisson bracket appears rather non-trivial, it extends up to the 8th

order in fermion ψ and its derivative ψ′, we refer the reader to appendix E where the

complete expression for the bracket is presented.

6. Canonical Poisson structure and hamiltonian

In the previous section we formulated our dynamical system in such a way that it has a

rather simple hamiltonian but a relatively complicated Poisson structure. In this section we

find a further transformation of the fermionic variables which brings the Poisson structure

of the model to the canonical form. Of course, the prize we pay for simplification of the

Poisson brackets is that under this transformation the hamiltonian becomes rather non-

trivial. The key idea is to find such a non-linear redefinition of the fermionic variables

which transforms the kinetic term in eq. (5.11) to the canonical form

Lkin = − i

2

(
ψ̄ρ0∂0ψ − ∂0ψ̄ρ0ψ

)
. (6.1)

Indeed, the kinetic term (6.1) implies the standard symplectic structure

{ψ∗
α(σ), ψβ(σ′)} = iδαβδ(σ − σ′) . (6.2)

The proper redefinition can be found order by order in powers of fermions. For the sake

of simplicity we omit the corresponding calculations and refer the reader to appendix D,

where we give the final and explicit form of the required change of variables. Substituting

the found redefinition of the fermions, eqs.(D.1), into eq. (5.10) we obtain the following

hamiltonian

H = J − i

√
λ′

2
(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ) − ψ̄ψ +
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+
1

J

[λ′

2

(
(ψ̄∂1ψ)2 + (∂1ψ̄ψ)2

)
− i

√
λ′

2
ψ̄ψ(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ)

]
+

+
1

J2

[
− i

λ′ 3
2

8
(ψ̄ψ)2

(
∂1ψ̄ρ1∂2

1ψ − ∂2
1ψ̄ρ1∂1ψ

)
− 3λ′

8
(ψ̄ψ)2 ∂1ψ̄∂1ψ +

+ i
λ′ 3

2

2
ψ̄ψ(ψ̄∂1ψ − ∂1ψ̄ψ)∂1ψ̄ρ1∂1ψ

]
−

− 1

J3

[λ′2

2
(ψ̄ψ)2(∂1ψ̄∂1ψ)2

]
. (6.3)

Thus, our dynamical system is described now by the hamiltonian (6.3) supplied with the

canonical Poisson bracket (6.2). Therefore, in the following we will refer to eq. (6.3) as to

the canonical hamiltonian.

The expression (6.3) provides the canonical hamiltonian of the consistently truncated

su(1|1) subsector of the classical superstring theory on AdS5 × S5. It was derived as an

exact function of J . We have rearranged the final result (6.3) in the form of the large J

expansion with λ′ = λ
J2 kept fixed.6

Thus, the first line in eq. (6.3) is the well-known plane-wave hamiltonian [29] and the

second one encodes the near-plane wave correction to it. It is rather intriguing that 1/J

expansion of H terminates at order 1/J3. This does not happen, for instance, for the

bosonic su(2) subsector of string theory, where the uniform-gauge hamiltonian is of the

Nambu (square root) type. Apriori one could expect the appearance of higher derivative

terms in eq. (6.3) that would lead to higher-order terms in 1/J (and also in λ′) expansion.

Such a property of the 1/J expansion might have certain implications for the dual gauge

theory. We note, however, that in spite of the fact that the classical hamiltonian terminates

at order 1/J3, the 1/J-corrections to the classical energy obtained through the semiclassical

(perturbative) quantization procedure will not terminate at a certain order.

To conclude this section we note that under redefinition (D.1) the level-matching con-

straint (4.14) becomes very simple

V =

∫
dσ

2π

i

2
(ψ̄ρ0∂1ψ − ∂1ψ̄ρ0ψ) = i

∫
dσ

2π
ψ∗

i ψ
′
i (6.4)

and it just generates the rigid shifts σ → εσ. Also the generator Q of the U(1) charge (5.8)

simplifies to

Q =

∫
dσ

2π
ψ̄ρ0ψ =

∫
dσ

2π
ψ∗

i ψi . (6.5)

This simplification of the level-matching constraint and the U(1) charge can be also con-

sidered as an independent non-trivial check of redefinitions (D.1).

7. Near-plane wave correction to the energy

The near-plane wave correction to the energy of the plane-wave states from the su(1|1)
sector has been already found in [25, 26]. The corresponding computation was based on

6The rearrangement of the 1/
√

λ expansion in the form of the large J expansion with λ′ fixed is a generic

fact valid also for the expansion around multi-spin string configurations [28].
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finding the 1/J correction to the plane-wave hamiltonian in a specific light-cone type gauge.

The uniform gauge we adopt in our approach is different. Due to the complicated nature

of the results of [25] we were not able to compare directly their hamiltonian with the 1/J-

term in eq. (6.3). Moreover, we see that this comparison will definitely require finding a

redefinition of our fermionic variables to that of [25]. Nevertheless it is possible to make a

comparison in a simple way. In this section we compute the 1/J correction to the energy

of arbitrary M -impurity plane-wave states from our hamiltonian (6.3) and find perfect

agreement with the results in [25, 26]. The simplicity of the corresponding calculation is

rather remarkable.

To create string states dual to the gauge theory operators from the su(1|1) subsector

we need to choose a proper representation of the anti-commutation relations for fermions.

Writing ψ as

ψ =

(
ψ1

ψ2

)
, (7.1)

and expanding the fermions in Fourier modes

ψα(σ) =
∞∑

n=−∞
einσψα,n , ψ†

α(σ) =
∞∑

n=−∞
e−inσψ†

α,n , (7.2)

we introduce the following creation and annihilation operators

ψ1,n = fna+
n + gnb−n , ψ2,n = fnb−n + gna+

n ,

ψ†
1,n = fna−n − gnb+

n , ψ†
2,n = fnb+

n − gna−n , (7.3)

where we have defined the functions

fn =

√
1

2
+

1

2
√

1 + λ′n2
, gn =

i
√

λ′ n

1 +
√

1 + λ′n2

√
1

2
+

1

2
√

1 + λ′n2
.

In terms of the oscillators, the free lagrangian which is the first line in eq. (5.3) takes

the form

L = −J +

∞∑

n=−∞

[
−i

(
a+

n ȧ−n + b+
n ḃ−n

)
− ωn

(
a+

n a−n + b+
n b−n

)]
, (7.4)

where ωn =
√

1 + λ′n2. We thus see that (a−, a+) and (b−, b+) are pairs of canonically

conjugated operators. The SYM operators from the su(1|1) subsector are dual to states

obtained by acting by operators a+
n on the vacuum. In general, however, such a state with

M excitations (“impurities”), a+
n1

· · · a+
nM

can be also multiplied by a function of a+
k b+

m

because the combination a+
k b+

m is neutral. It does not matter at the first order in the 1/J

expansion.

The level matching condition has the usual form

V =
1

J

∞∑

n=−∞

(
n a+

n a−n − n b+
n b−n

)
, (7.5)

and therefore the sum of a-modes should be equal to the sum of b-modes. For the states

dual to SYM operators from the su(1|1) subsector the sum of modes should vanish.
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Now we can compute the energy shift at order 1/J . The relevant part of the hamilto-

nian (6.3) is

H = J − i

√
λ′

2
(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ) − ψ̄ψ +

+
1

J

[λ′

2

(
(ψ̄∂1ψ)2 + (∂1ψ̄ψ)2

)
− i

√
λ′

2
ψ̄ψ(ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ)

]
.

We need to substitute here the representation for fermions, eqs.(7.3), and switch off the

b-oscillators. The normal-ordered hamiltonian is

H = J +
∑

n

ωna+
n a−n +

√
λ′

2J

∑

n1,n2,n3,n4

δn1−n2+n3−n4
(fn1

fn2
+ gn1

gn2
) ×

×
[
i(n3 + n4)(fn4

gn3
+ fn3

gn4
) −

√
λ′(n1n3 + n2n4)(fn3

fn4
+ gn3

gn4
)
]

a+
n4

a+
n2

a−n3
a−n1

.

A state carrying M units of the U(1) charge Q is

|M〉 = a+
n1

. . . a+
nM

|0〉 . (7.6)

Since all fermions ψα are neutral under the U(1) subgroup rotating the bosonic field Z,

any such a state carries the same J units of the corresponding charge for any number of

excitations M . That means that an M -impurity string state should be dual to the field

theory operator of the form

tr
(
ΨMZJ−M

2

)
+ · · · .

We can see from this formula that at M = 2J there should exist only one string state

which is dual to the operator

tr Ψ2J .

Such a restriction cannot be seen in the 1/J perturbation theory but would play an im-

portant role in the exact (finite J) quantization of the model.

It is trivial to compute the matrix element

〈M |a+
n4

a+
n2

a−n3
a−n1

|M〉 =
1

2

M∑

i,j=1

(
δn1,nj

δn3,ni
− δn1,ni

δn3,nj

)(
δn2,ni

δn4,nj
− δn2,nj

δn4,ni

)
,

where ni and nj are some indices which occur in (7.6). With this formula at hand we can

easily find the energy shift (ωi ≡ ωni
)

〈M |H|M〉 = J +
M∑

i=1

ωi −
λ′

4J

M∑

i6=j

n2
i + n2

j + 2n2
i n

2
jλ

′ − 2ninjωiωj

ωiωj

. (7.7)

This precisely reproduces the 1/J correction to the M -impurity plane-wave states obtained

in [26], which up to order λ′2 agrees with the gauge theory result [16].
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8. Lax representation

In this section we discuss the Lax representation of the equations of motion corresponding

to the truncated lagrangian. Our starting point is the Lax pair found in [2]. It is based on

the two-dimensional Lax connection L with components

Lα = `0A
(0)
α + `1A

(2)
α + `2γαβεβρA(2)

ρ + `3Q
+
α + `4Q

−
α , (8.1)

where `i are constants and Q± = A(1) ± A(3). The connection L is required to have zero

curvature

∂αLβ − ∂βLα − [Lα,Lβ ] = 0 (8.2)

as a consequence of the dynamical equations and the flatness of Aα. This requirement of

zero curvature also leads to determination of the constants `i. First we find

`0 = 1, `1 =
1 + x2

1 − x2
,

where x is a spectral parameter. Then for the remaining `i we obtain the following solution

`2 = s1
2x

1 − x2
, `3 = s2

1√
1 − x2

, `4 = s3
x√

1 − x2
. (8.3)

Here s2
2 = s2

3 = 1 and

s1 + s2s3 = 0 for κ =

√
λ

2
, (8.4)

s1 − s2s3 = 0 for κ = −
√

λ

2
. (8.5)

Thus, for every choice of κ we have four different solutions for `i specified by the choice

of s2 = ±1 and s3 = ±1, c.f. the corresponding discussion in [17]. As explained in [17],

the Lax connection (8.1) can be explicitly realized in terms of 8 × 8 supermatrices from

the Lie algebra su(2, 2|4). In the algebra su(2, 2|4) the curvature (8.2) of Lα is not exactly

zero, rather it is proportional to the identity matrix (anomaly) with a coefficient depending

on fermionic variables. However, in psu(2, 2|4) the curvature is regarded to be zero since

psu(2, 2|4) is the factor-algebra of su(2, 2|4) over its central element proportional to the

identity matrix [17, 30]. In the following we consider the Lax connection which corresponds

to the choice κ =
√

λ
2 .

Now we are ready to show that the Lax connection (8.1) for the general psu(2, 2|4)
model can be consistently reduced to a Lax connection encoding the equations of motion

of physical fields from the su(1|1) sector. The fact that the reduction holds at the level of

the matrix equations formulated in terms of 8× 8 matrices is rather non-trivial and should

be regarded as a proof of consistency of the reduction procedure.

We start with the projection A
(0)
α . As was already discussed, in our reduction we keep

non-zero only the Dirac fermion ψ and solve for the world-sheet metric γαβ and unphysical

fields t, and φ in terms of ψ by using our uniform gauge conditions and the constraints. Let

us now compute the components A
(0)
α on our reduction and further perform the shift (5.4).
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We find

A(0)
σ = 1

4(1 + ψ̄ψ)(ψ̄ψ′ − ψ̄′ψ) diag
(
1,−1, 0, 0; 0, 0,−1, 1

)
,

A(0)
τ =

[
1
4(1 + ψ̄ψ)(ψ̄ψ̇ − ˙̄ψψ) + i

2 ψ̄ρ0ψ
]

diag
(
1,−1, 0, 0; 0, 0,−1, 1

)
.

Thus, the component A(0) appears to be a diagonal matrix, the first (last) four eigenvalues

correspond to the AdS (sphere) part of the model. These matrices have four zero’s in

the middle and this suggests that the whole Lax connection for the reduced sector can

be formulated in terms of 4 × 4 matrices rather than 8 × 8. Computation of the other

components of the Lax connection shows that this is indeed the case. Therefore, in what

follows we compute the components of the reduced Lax connection as traceless 8 × 8

matrices and then throw away from all the matrices the 4 × 4 block sitting in the middle

(i.e. the corresponding rows and columns). This block appears to be non-trivial only for

A
(2)
α , however, one can show that it leads to redundant equations which are satisfied due

to the equations of motions for fermions followed from other matrix elements. To simplify

our treatment in what follows we present the reduced Lax connection in terms of the 4× 4

matrices whose dynamical variables are those from the lagrangian (5.5). It is convenient

to introduce two diagonal matrices

I = diag
(
1,−1,−1, 1

)
, J = diag

(
1, 1,−1,−1

)
. (8.6)

Then we find the following bosonic currents for the reduced model

A(0)
σ = 1

4(1 + ψ̄ψ)(ψ̄ψ′ − ψ̄′ψ) I ,

A(0)
τ =

[
1
4(1 + ψ̄ψ)(ψ̄ψ̇ − ˙̄ψψ) + i

2 ψ̄ρ0ψ
]

I ,

A(2)
σ = 1

8ζσ J ,

A(2)
τ = 1

8(ζτ + 2iψ̄ψ − 4i) J . (8.7)

Here for reader’s convenience we recall that

ζτ = ψ̄ρ0ψ̇ − ˙̄ψρ0ψ , ζσ = ψ̄ρ0ψ′ − ψ̄′ρ0ψ . (8.8)

Notice also that the coefficient of A
(2)
σ is proportional to the density of the level-matching

condition. The odd matrices Q±
α appears on our reduction are precisely skew-diagonal.

Introducing the matrices

Θ = (1 + 1
4 ψ̄ψ)




ψ2

ψ∗
1

ψ1

ψ∗
2


 , Θ̂ = i(1 + 1

4 ψ̄ψ)




−ψ1

−ψ∗
2

ψ2

ψ∗
1


 (8.9)

the components Q±
α can be written as

Q+
α = [A(2)

α ,Θ] − ∂αΘ , Q−
α = [A(2)

α , Θ̂] + ∂αΘ̂ .
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The original Lax connection (8.1) also involves the following terms

γτβεβρA(2)
ρ = −γσσA(2)

σ − γστA(2)
τ ,

γσβεβρA(2)
ρ = γττA(2)

τ + γτσA(2)
σ . (8.10)

Substituting here the solution for the metric, eqs.(4.16), (4.17), we obtain remarkably

simple formulae

γτβεβρA(2)
ρ =

i

8
Ωτ J , (8.11)

γσβεβρA(2)
ρ =

i

4
√

λ
(J + H) J , (8.12)

where

H = J − i

√
λ

2
(ψ̄ρ1ψ′ − ψ̄′ρ1ψ) − Jψ̄ψ

is the hamiltonian obtained from the lagrangian (5.5).

By using the equations of motion following from (5.5) one can prove the following

on-shell relation

Ωτ = −i

√
λ

J
ζσ . (8.13)

Thus, we finally get

γτβεβρA(2)
ρ =

√
λ

8J
ζσ J , (8.14)

γσβεβρA(2)
ρ =

i

4
√

λ
(J + H) J . (8.15)

In this way we completely excluded the metric in favor of dynamical variables from the

Lax representation.

Now putting all the pieces of the Lax connection together we check that the zero-

curvature condition (8.2) is indeed satisfied as the consequence of the dynamical equa-

tions for fermions derived from the lagrangian (5.5). This proves that the model of two-

dimensional Dirac fermions defined by the lagrangian (5.5) is integrable. Eigenvalues of

the monodromy matrix

T(x) = Pexp

∫ 2π

0
dσLσ (8.16)

are the integrals of motion. Finally we note that to get a connection with the lagrangian

(5.9) one has to rescale the fermion as ψ → 1√
J
ψ.
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A. Gamma-matrices

Introduce the following five 4 × 4 matrices

γ1 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


, γ2 =




0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


, γ3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


,

γ4 =




0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0


, γ5 =




i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 −i


 = −iγ1γ2γ3γ4 .

These matrices satisfy the SO(4,1) Clifford algebra

γaγb + γbγa = 2ηab , a = 1, . . . , 5.

where η = diag(1, 1, 1, 1,−1). Further, the matrices γa belong to the Lie algebra su(2, 2)

as they satisfy the relation

Σγa + γ†
aΣ = 0 , Σ = diag(1, 1,−1,−1). (A.1)

Analogously, the SO(5) Dirac matrices are

Γ1 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


, Γ2 =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


, Γ3 =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


,

Γ4 =




0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


, Γ5 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .

They satisfy the SO(5) Clifford algebra

ΓaΓb + ΓbΓa = 2δab .

Moreover, all of them are hermitian, so that iΓa belongs to su(4).
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We represent the generators of the superconformal group by the su(2, 2) matrices. In

particular, the generator of scaling transformations is chosen to be

D =
1

2




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 = − i

2γ5 = 1
2Γ5 . (A.2)

The generators of translations are given by

P0 =




0 0 0 0

0 0 0 0

i 0 0 0

0 i 0 0


, P1 =




0 0 0 0

0 0 0 0

i 0 0 0

0 −i 0 0


, P2 =




0 0 0 0

0 0 0 0

0 i 0 0

i 0 0 0


, P3 =




0 0 0 0

0 0 0 0

0 1 0 0

−1 0 0 0


.

The conformal boosts are defined as

Ki = (Pi)t, for i = 0, 3; Ki = −(Pi)t, for i = 1, 2 . (A.3)

We also have

P0 + K0 = −γ3 , P3 + K3 = −γ1 , (A.4)

P1 + K1 = −γ2 , P2 + K2 = −γ4 . (A.5)

B. Global symmetry transformations

Conformal transformations. If we parametrize the su(2, 2) matrix Φ parametrizing

infinitezimal conformal transformation as

Φ =




iξ1 α1 + iβ1 α2 + iβ2 α3 + iβ3

−α1 + iβ1 iξ2 α4 + iβ4 α5 + iβ5

α2 − iβ2 α4 − iβ4 iξ3 α6 + iβ6

α3 − iβ3 α5 − iβ5 − α6 + iβ6 −i(ξ1 + ξ2 + ξ3)


 . (B.1)

then eq. (2.26) implies the following transformation rules for the coordinates v:

δv1 = (β1 + β6)v2 + (α1 − α6)v3 + (ξ1 + ξ3)v4 + (β3 − β4)v5 + (α3 − α4)v6

δv2 = −(β1 + β6)v1 − (ξ2 + ξ3)v3 − (α1 + α6)v4 + (−α2 + α5)v5 + (β2 − β5)v6

δv3 = (−α1 + α6)v1 + (ξ2 + ξ3)v2 + (β1 − β6)v4 + (β2 + β5)v5 + (α2 + α5)v6

δv4 = −(ξ1 + ξ3)v1 + (α1 + α6)v2 + (−β1 + β6)v3 + (α3 + α4)v5 − (β3 + β4)v6

δv5 = (β3 − β4)v1 + (−α2 + α5)v2 + (β2 + β5)v3 + (α3 + α4)v4 + (ξ1 + ξ2)v6

δv6 = (α3 − α4)v1 + (β2 − β5)v2 + (α2 + α5)v3 − (β3 + β4)v4 − (ξ1 + ξ2)v5 .

– 27 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
8

R-symmetry transformations. If we parametrize the su(4) matrix Φ parametrizing

infinitezimal R-symmetry transformation as

Φ
su(4) =




iξ1 α1 + iβ1 α2 + iβ2 α3 + iβ3

−α1 + iβ1 iξ2 α4 + iβ4 α5 + iβ5

−α2 + iβ2 − α4 + iβ4 iξ3 α6 + iβ6

−α3 + iβ3 − α5 + iβ5 − α6 + iβ6 −i(ξ1 + ξ2 + ξ3)


 . (B.2)

then we find the following transformation rules for the coordinates ui:

δu1 = (β1 + β6)u2 + (α1 − α6)u3 + (ξ1 + ξ3)u4 + (α3 − α4)u5 + (β4 − β3)u6

δu2 = −(β1 + β6)u1 − (ξ2 + ξ3)u3 − (α1 + α6)u4 + (β2 − β5)u5 + (α2 − α5)u6

δu3 = (−α1 + α6)u1 + (ξ2 + ξ3)u2 + (β1 − β6)u4 + (α2 + α5)u5 − (β2 + β5)u6

δu4 = −(ξ1 + ξ3)u1 + (α1 + α6)u2 + (−β1 + β6)u3 − (β3 + β4)u5 − (α3 + α4)u6

δu5 = (−α3 + α4)u1 + (−β2 + β5)u2 − (α2 + α5)u3 + (β3 + β4)u4 + (ξ1 + ξ2)u6

δu6 = (β3 − β4)u1 + (−α2 + α5)u2 + (β2 + β5)u3 + (α3 + α4)u4 − (ξ1 + ξ2)u5 .

Clearly, these transformations obey the constraint uiδui = 0.

C. Fermionic identities and conjugation rules

Here we collect some formulas involving fermionic expressions. Introducing the Dirac

fermion ψ, see eq. (5.1), we find that

ζτ = ψ̄ρ0∂0ψ − ∂0ψ̄ρ0ψ , (C.1)

Ωσ = −i
(
ψ̄ρ1∂1ψ − ∂1ψ̄ρ1ψ

)
, (C.2)

Λ = ψ̄ψ . (C.3)

We have a few important identities which allow us to simplify the structure of the

lagrangian. They include

εαβ
[
− ψ̄ψ ∂αψ̄ρ5∂βψ + ∂αψ̄∂βψ ψ̄ρ5ψ + ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ

]
=

= εαβ
[
− ∂α

(
ψ̄ψ ψ̄ρ5∂βψ + ∂βψ̄ψ ψ̄ρ5ψ

)
+ 2

(
ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ

) ]

and

εαβ
[
ψ̄ψ

(
−ψ̄ψ ∂αψ̄ρ5∂βψ + ∂αψ̄∂βψ ψ̄ρ5ψ + ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ

) ]

= −(ψ̄ψ)2εαβ∂αψ̄ρ5∂βψ . (C.4)

The following identity is valid

ψ̄ρ0∂0ψ ψ̄ρ1∂1ψ = −ψ̄∂0ψ ψ̄ρ5∂1ψ (C.5)

In addition the properties of the ρ-matrices imply the following complex conjugation rules:

(ψ̄∂αψ)∗ = ∂αψ̄ψ, (ψ̄ρ5∂αψ)∗ = −∂αψ̄ρ5ψ (C.6)
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D. Change of variables

We have found that in order to bring the kinetic term (5.11) to the canonical form (6.1) the

following non-linear shift of the fermions in eq. (5.11) should be performed (here κ =
√

λ′

2 )

ψ → ψ +
iκ

J2
ρ1ψ (∂1ψ̄ψ) − iκ

8J3
ρ1∂1ψ (ψ̄ψ)2 − κ2

4J4
∂2

1ψ (ψ̄ψ)2 −

− κ2

2J4
∂1ψ (∂1ψ̄ψ − ψ̄∂1ψ)ψ̄ψ +

κ2

2J4
ρ0ψ (∂1ψ̄ρ0∂1ψ)ψ̄ψ −

− 5

4

iκ3

J6
ρ1∂1ψ(∂1ψ̄∂1ψ) (ψ̄ψ)2 ,

ψ̄ → ψ̄ − iκ

J2
ψ̄ρ1 (ψ̄∂1ψ) +

iκ

8J3
∂1ψ̄ρ1 (ψ̄ψ)2 − κ2

4J4
∂2

1 ψ̄ (ψ̄ψ)2 +

+
κ2

2J4
∂1ψ̄ (∂1ψ̄ψ − ψ̄∂1ψ)ψ̄ψ +

κ2

2J4
ψ̄ρ0 (∂1ψ̄ρ0∂1ψ)ψ̄ψ +

+
5

4

iκ3

J6
∂1ψ̄ρ1(∂1ψ̄∂1ψ) (ψ̄ψ)2 . (D.1)

Under this shift the hamiltonian (5.10) transforms into expression (6.3). Below we also

give the formulae for the transformation inverse to (D.1):

ψ → ψ − iκ

J2
ρ1ψ (∂1ψ̄ψ) +

iκ

8J3
ρ1∂1ψ (ψ̄ψ)2 − κ2

4J4
∂2

1ψ (ψ̄ψ)2 −

− κ2

2J4
∂1ψ (∂1ψ̄ψ + ψ̄∂1ψ)ψ̄ψ − κ2

2J4
ρ0ψ (∂1ψ̄ρ0∂1ψ)ψ̄ψ −

− iκ3

4J6
ρ1∂1ψ(∂1ψ̄∂1ψ) (ψ̄ψ)2 ,

ψ̄ → ψ̄ +
iκ

J2
ψ̄ρ1 (ψ̄∂1ψ) − iκ

8J3
∂1ψ̄ρ1 (ψ̄ψ)2 − κ2

4J4
∂2

1 ψ̄ (ψ̄ψ)2 −

− κ2

2J4
∂1ψ̄ (∂1ψ̄ψ + ψ̄∂1ψ)ψ̄ψ − κ2

2J4
ψ̄ρ0 (∂1ψ̄ρ0∂1ψ)ψ̄ψ +

+
iκ3

4J6
∂1ψ̄ρ1(∂1ψ̄∂1ψ) (ψ̄ψ)2 . (D.2)

E. Poisson structure

As was discussed in section 5, the Poisson structure of the model which corresponds to the

simple hamiltonian (5.10) is rather involved and extends up to the 8th order in the variables

ψ,ψ′. It is unclear for the moment if and how this Poisson bracket could be related to

the known algebraic structures appearing in the inverse scattering method or in the theory

of Kac-Moody algebras. In view of future understanding and further applications we give

below the complete list of the Poisson relations (5.14),(5.15) for ψ,ψ∗ variables.

{ψ1, ψ1} = − i
√

λ′

2J
(ψ1ψ2)

′ +
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+
i
√

λ′

4J2
(ψ1ψ2)

′(ψ2ψ
∗
2 − 2

√
λ′ψ2ψ

′∗
1 +

√
λ′ψ∗

2ψ
′
1) +

+
iλ′ 32

8J3
(ψ1ψ2)

′2(ψ∗
1ψ

′∗
2 + 3ψ∗

2ψ′∗
1 ) ,

{ψ2, ψ2} = − i
√

λ′

2J
(ψ1ψ2)

′ −

− i
√

λ′

4J2
(ψ1ψ2)

′(ψ1ψ
∗
1 − 2

√
λ′ψ1ψ

′∗
2 +

√
λ′ψ∗

1ψ
′
2) −

− iλ′ 32

8J3
(ψ1ψ2)

′2(3ψ∗
1ψ′∗

2 + ψ∗
2ψ

′∗
1 ) ,

{ψ1, ψ2} =
i
√

λ′

8J2
(ψ1ψ2)

′(ψ1ψ
∗
2 + ψ∗

1ψ2 + 2
√

λ′(ψ1ψ
∗
1 − ψ2ψ

∗
2)

′) −

− iλ′

4J3
(ψ1ψ2)

′2(−ψ∗
1ψ

∗
2 +

√
λ′(ψ∗

1ψ
′∗
1 − ψ∗

2ψ
′∗
2 )) ,

{ψ1, ψ
∗
2} = − i

√
λ′

2J
(ψ1ψ

′∗
1 + ψ∗

2ψ
′
2) +

+
i
√

λ′

8J2

[
(−ψ1ψ2ψ

∗
1ψ

′∗
2 + ψ2ψ

∗
1ψ

∗
2ψ

′
1 + 2ψ1ψ2ψ

∗
2ψ

′∗
1 − 2ψ1ψ

∗
1ψ

∗
2ψ

′
2) +

+ 2
√

λ′(−ψ1ψ
∗
1ψ

′
2ψ

′∗
1 + ψ1ψ

∗
2ψ

′
1ψ

′∗
1 + ψ1ψ

∗
2ψ

′
2ψ

′∗
2 − ψ2ψ

∗
2ψ

′
2ψ

′∗
1 )

]
−

− iλ′ 3
2

4J3

[
ψ1ψ2ψ

∗
1ψ

′
1ψ

′∗
1 ψ′∗

2 + ψ2ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
2

]
,

{ψ2, ψ
∗
1} =

i
√

λ′

2J
(ψ∗

1ψ
′
1 + ψ2ψ

′∗
2 ) +

+
i
√

λ′

8J2

[
(ψ1ψ2ψ

∗
2ψ

′∗
1 − ψ1ψ

∗
1ψ

∗
2ψ

′
2 − 2ψ1ψ2ψ

∗
1ψ

′∗
2 + 2ψ2ψ

∗
1ψ

∗
2ψ

′
1) +

+ 2
√

λ′(−ψ1ψ
∗
1ψ

′
1ψ

′∗
2 + ψ2ψ

∗
1ψ

′
1ψ

′∗
1 + ψ2ψ

∗
1ψ

′
2ψ

′∗
2 − ψ2ψ

∗
2ψ

′
1ψ

′∗
2 )

]
+

+
iλ′ 3

2

4J3

[
ψ1ψ2ψ

∗
2ψ

′
2ψ

′∗
1 ψ′∗

2 + ψ1ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
1

]
.

{ψ1, ψ
∗
1} = i +

i
√

λ′

2J
(ψ2ψ

′∗
1 − ψ∗

2ψ
′
1) +

+
i
√

λ′

8J2

[
ψ2ψ

∗
2(ψ1ψ

′∗
2 − ψ∗

1ψ
′
2) +

+ 2
√

λ′(ψ1ψ2ψ
′∗
1 ψ′∗

2 − ψ1ψ
∗
1ψ

′
1ψ

′∗
1 + ψ1ψ

∗
1ψ

′
2ψ

′∗
2 − ψ1ψ

∗
2ψ

′
2ψ

′∗
1 −

− ψ2ψ
∗
1ψ

′
1ψ

′
2 − ψ2ψ

∗
2ψ

′
1ψ

′∗
1 − ψ2ψ

∗
2ψ

′
2ψ

′∗
2 + ψ∗

1ψ
∗
2ψ

′
1ψ

′
2)

]
+

+
iλ′

4J3

[
ψ1ψ2ψ

∗
1ψ

∗
2(−ψ′

1ψ
′∗
1 + 2ψ′

2ψ
′∗
2 ) +

+
√

λ′(−ψ1ψ2ψ
∗
2ψ

′
1ψ

′∗
1 ψ′∗

2 + ψ2ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
1 +

+ 2ψ1ψ2ψ
∗
1ψ

′
2ψ

′∗
1 ψ′∗

2 − 2ψ1ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
2 )

]
−

− 3iλ′2

4J4
ψ1ψ2ψ

∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
1 ψ′∗

2 ,
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{ψ2, ψ
∗
2} = i − i

√
λ′

2J
(ψ1ψ

′∗
2 − ψ∗

1ψ
′
2) +

+
i
√

λ′

8J2

[
(ψ1ψ

∗
1(ψ2ψ

′∗
1 − ψ∗

2ψ
′
1) +

+ 2
√

λ′(ψ1ψ2ψ
′∗
1 ψ′∗

2 − ψ1ψ
∗
1ψ

′
1ψ

′∗
1 − ψ1ψ

∗
1ψ

′
2ψ

′∗
2 − ψ1ψ

∗
2ψ

′
2ψ

′∗
1 −

− ψ2ψ
∗
1ψ

′
1ψ

′
2 + ψ2ψ

∗
2ψ

′
1ψ

′∗
1 − ψ2ψ

∗
2ψ

′
2ψ

′∗
2 + ψ∗

1ψ
∗
2ψ

′
1ψ

′
2)

]
+

+
iλ′

4J3

[
ψ1ψ2ψ

∗
1ψ

∗
2(−2ψ′

1ψ
′∗
1 + ψ′

2ψ
′∗
2 ) +

+
√

λ′(ψ1ψ2ψ
∗
1ψ

′
2ψ

′∗
1 ψ′∗

2 − ψ1ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
2 −

− 2ψ1ψ2ψ
∗
2ψ

′
1ψ

′∗
1 ψ′∗

2 + 2ψ2ψ
∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
1 )

]
−

− 3iλ′2

4J4
ψ1ψ2ψ

∗
1ψ

∗
2ψ

′
1ψ

′
2ψ

′∗
1 ψ′∗

2 .

The Poisson bracket is ultra-local. Here for the sake of simplicity we have omitted on the

r.h.s. the overall delta function δ(σ − σ′).
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